AST Antimicrobial Susceptibility Testing

Marc V. Assous, MD, PhD
Shaare Zedek Med. Ctr.
Universite Paris Descartes
The purpose

- To present the methods used for AST
 - B - Agar dilution
 - C - semi-automated methods
 - D - Agar diffusion
 - E - Gradient diffusion

- To define for each one
 - Parameters
 - Performances
 - Advantages
 - Disadvantages

- Only rapid growing bacteria
Choice of routine methods

- For non fastidious bacteria all methods are satisfactory
- Depends on:
 - cost
 - Time of processing/work
 - Reagents availability
 - Professional knowledge
 - Automation access
- More sophisticated methods are:
 - Micro-dilution
 - Agar dilution
 - Semi-automated
- Disk diffusion remains the more accessible and economic method
- Most laboratories have 2 methods

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
MIC = Minimum Inhibitory Concentration

Standard inoculum
Doubling dilutions of antibiotic (mg/L)

64 32 16 8 4 2 1 .5

4 μg/ml

Adapted From Pr C. Block

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Broth Micro-dilution - 1

- Broth Muller-Hinton micro-dilution method is the international standard reference method (ISO 20776-2006)
- This standard was chosen by the
 - ISO
 - EUCAST
 - CLSI
 - CA-SFM
- The method was very carefully evaluated and
- Was correlated to modern parameters like pharmokinetics/pharmacodynamics (PK/PD) (breakpoints)

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Broth Microdilution-2

- Microplates 96 wells U
- In house or reagents
- In house only Reference Lab (titrated antibiotic powder, QC)
- ISO 20776-1(2006) 96 euros
- 100 µl MH broth cation-adjusted (CAMHB), 5x10^4 bacteria/ml, 35°C 18-24h.
- QC +++ ATCC and QC target /range ± 1 dilution
An example of broth micro-dilution

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Broth Micro-dilution-3

- **Other media**
 - several genus needs enriched broth
 - HTM for *Haemophilus* spp
 - Brucella for *Brucella* and anaerobies
 - Lysed horse blood
 - Special cases: Daptomycin, *Abiotrophia*, *Granulicatella* (B6)...
 - Quite simple to adapt the method for each purpose!

- **Problems**
 - Not “clear cut” (“En traine”)
 - Partial growth (80% control)
 - Well(s) with no growth

- **MBC (minimal bactericidal concentration)?**
 - Important to characterize new antibiotics
 - Bacteriostatic or bactericidal
 - Not useful to determine in clinical practice

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Agar dilution method-1

- Standard method published: CLSI, EUCAST, CA-SFM

42 tips in each

Antibiotic included in the agar plate
Each plate represents another dilution

Steers apparatus

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Agar dilution method

- Very frequently used method
- Mueller Hinton plates, Isosensitest etc...
- No international standardization

Problems:
Not standardized for: *H. influenzae* and *parainfluenzae*, *B. cepacia* and other fastidious bacteria
- For some bacteria/antibiotic diff. between MIC
- Technical problems
- Ionic concentration not controlled, PB with Dapto. and Tigecycline.

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Semi-automated methods-1

- 3 Apparatus: Siemens MicroScan®
 Biomerieux Vitek2®, BD Phoenix®
- Liquid medium growth and turbidimetric reading
- Antibiotic concentrations are chosen between breakpoints
- Validation versus the micro-dilution method
- Correlation with the Ref. method is software assisted

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Semi-automated methods-2

- Microscan® and BD Phoenix® → true MIC, but only 1 or 2 dilutions around breakpoints
- Biomerieux Vitek2® → growth algorithm
- Whatever, limitation in the results
- Limitation of the card panel
- Delay between occurrence of new events and updates.
- Cost is higher than other phenotypic methods.
The most used routine method for routine AST
Available for a lot of bacteria species, fastidious bacteria included (Streptococcus, Haemophilus, pneumococcus...)
A lot of International experience and experts from all over the world.
A lot of variation on the same principle. But now, EUCAST and CLSI
Agar diffusion method-2

Regression curve

Zone diameter (mm)

Adapted From Pr C. Block

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Regression depends on the species but the method uses an average RC.

There is a need to use RC according to the species (EUCAST)

Some antibiotics exhibit diffusion problems (glycopeptides, polypeptides, daptomycin, linezolide) so Disc Diffusion is not adapted.

The USA standard is CLSI ($375!!) widespread

European standard is EUCAST (Free of charge), rather new, but progressively replaces national European standards (BASC, CA-SFM, SRGA)
Agar diffusion method-4

- CLSI (Clinical and Laboratory Standard Institute)
 - Mueller Hinton → rapid growing bacteria
 - *Haemophilus* Test Medium.
 - MH + 5% sheep blood → *Streptococcus (pneumoniae)*
 - Other fastidious bacteria

- EUCAST (European Union Committee for AST)
 - Mueller Hinton → rapid growing bacteria
 - MH + 5% horse blood + 20mg β-NAD/L → *Haemophilus AND Streptococcus (pneumoniae)*
 - Correlation between Zone Diameters and MIC
 - Breakpoints from EUCAST
Agar diffusion method – 5

- Standardization +++
- Standard Operating Procedures
- Zone Diameter Distribution
- CLSI and EUCAST: same MIC/ZD for rapid growing bacteria
- CLSI and EUCAST: same MIC for fastidious but not same ZD.
- For better validation, comparison with histogram distribution
- QC for routine is necessary to implement.

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Agar diffusion method - Performances

FIGURE 2.4 Relationship between zone diameters and MICs.

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Agar diffusion method

Antimicrobial wild type distributions of microorganisms

Search

Method:
- MIC
- Disk diffusion

Antimicrobial:
Species:

Species: Staphylococcus aureus (Method: Disk diffusion)

Distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Disk content</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amikacin</td>
<td>20</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>24</td>
<td>18</td>
<td>28</td>
<td>29</td>
<td>98</td>
<td>148</td>
<td>214</td>
<td>179</td>
<td>64</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Amoxicillin-clavulanic acid</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>16</td>
<td>24</td>
<td>17</td>
<td>24</td>
<td>31</td>
<td>20</td>
<td>20</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Benzylpenicillin</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>5</td>
<td>13</td>
<td>35</td>
<td>162</td>
<td>263</td>
<td>272</td>
<td>222</td>
<td>160</td>
<td>55</td>
<td>62</td>
<td>47</td>
<td>34</td>
<td>37</td>
<td>31</td>
<td>23</td>
<td>25</td>
<td>15</td>
<td>21</td>
<td>8</td>
<td>17</td>
<td>26</td>
<td>56</td>
<td>79</td>
<td>37</td>
</tr>
<tr>
<td>Cefoxitin</td>
<td>30</td>
<td>275</td>
<td>13</td>
<td>23</td>
<td>28</td>
<td>50</td>
<td>75</td>
<td>79</td>
<td>102</td>
<td>17</td>
<td>194</td>
<td>235</td>
<td>190</td>
<td>162</td>
<td>85</td>
<td>40</td>
<td>16</td>
<td>17</td>
<td>59</td>
<td>218</td>
<td>684</td>
<td>1534</td>
<td>1861</td>
<td>1765</td>
<td>1390</td>
<td>1120</td>
<td>470</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>30</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>1</td>
<td>198</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>15</td>
<td>30</td>
<td>31</td>
<td>52</td>
<td>78</td>
<td>119</td>
<td>132</td>
<td>120</td>
<td>118</td>
<td>92</td>
<td>71</td>
<td>61</td>
<td>29</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Clindamycin</td>
<td>2</td>
<td>425</td>
<td>28</td>
<td>1</td>
<td>8</td>
<td>14</td>
<td>11</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>15</td>
<td>767</td>
<td>7</td>
<td>11</td>
<td>36</td>
<td>68</td>
<td>62</td>
<td>49</td>
<td>10</td>
<td>18</td>
<td>10</td>
<td>3</td>
<td>11</td>
<td>11</td>
<td>27</td>
<td>31</td>
<td>74</td>
<td>208</td>
<td>510</td>
<td>517</td>
<td>2333</td>
<td>2504</td>
<td>1530</td>
<td>690</td>
<td>376</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td>Fucid acid</td>
<td>10</td>
<td>79</td>
<td>0</td>
<td>14</td>
<td>40</td>
<td>110</td>
<td>118</td>
<td>62</td>
<td>73</td>
<td>55</td>
<td>25</td>
<td>19</td>
<td>21</td>
<td>22</td>
<td>27</td>
<td>35</td>
<td>46</td>
<td>60</td>
<td>98</td>
<td>202</td>
<td>278</td>
<td>780</td>
<td>1230</td>
<td>1560</td>
<td>1762</td>
<td>1651</td>
<td>955</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>10</td>
<td>71</td>
<td>2</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>15</td>
<td>11</td>
<td>6</td>
<td>12</td>
<td>34</td>
<td>121</td>
<td>433</td>
<td>1083</td>
<td>1641</td>
<td>1670</td>
<td>919</td>
<td>430</td>
<td>150</td>
<td>48</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>17</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td>17</td>
<td>124</td>
<td>35</td>
<td>726</td>
<td>1377</td>
<td>1724</td>
<td>1839</td>
<td>756</td>
<td>372</td>
<td>717</td>
<td>71</td>
<td>70</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Minocycline</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Mexifloxacin</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>20</td>
<td>15</td>
<td>19</td>
<td>22</td>
<td>25</td>
<td>21</td>
<td>21</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>200</td>
<td>0</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Imipenem / Klebsiella pneumoniae

EUCAST zone diameter distribution - Reference database 2012-10-28

EUCAST disk diffusion method

Distributions include collated data from multiple sources, geographical areas and time periods and can never be used to infer rates of resistance

Zone diameter (mm)

% microorganisms

ECOFF

Disk content: 10

Epidemiological cut-off: WT ≥ 23 mm (MIC ≤ 1 mg/L)

Clinical breakpoints: S ≥ 22 mm, R < 16 mm (S ≤ 2 mg/L, R > 8 mg/L)

441 observations (6 data sources)

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Interpretative reading of the antibiogram

BETA-LACTAMINES et ENTEROBACTERIES

<table>
<thead>
<tr>
<th>Antibiotique</th>
<th>Pase</th>
<th>Pase haut niveau</th>
<th>BLSE</th>
<th>Case</th>
<th>HyperCase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pénicillines</td>
<td>I/R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>amino</td>
<td>I/R</td>
<td>R</td>
<td>R</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>carboxi</td>
<td>I/R</td>
<td>I/R</td>
<td>R</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>uréido</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Céphalo.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1G</td>
<td>S</td>
<td>S/I</td>
<td>R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>C2G</td>
<td>S</td>
<td>S</td>
<td>R</td>
<td>S/I/R</td>
<td>R</td>
</tr>
<tr>
<td>C3G</td>
<td>S</td>
<td>S</td>
<td>I/R</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>IBL</td>
<td>S</td>
<td>S/I</td>
<td>S/I/R</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td>Imipénène</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

IBL : Inhibiteur de Bêta-Lactamase

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
This is a sub-population

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
E- Gradient Diffusion

- 1988, new method antibiotic gradient strip E-test® (AB-Biodisk)
- Also fungus and fastidious etc..
- Apparently, simple to use but needs to be performed according to manufacturer instructions and to implement QC/reading
- Quite expensive but simply allows to obtain a very good approximation of MIC for a lot of microorganisms

Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center
Conclusions

- Micro-dilution and Agar dilution → true MIC but not possible to use in routine

- For routine
 - Semi-automated method → good approximation of the MIC but expensive, not flexible. OK for SOP. Problems for detection of new mechanisms of resistance.
 - Disk diffusion → not MIC but EUCAST approach is of interest, low cost but needs carefully implementation of SOP and QC. Need for another method like E-test for some special cases (glycopeptides, polypeptides, etc...).
Dr Marc Assous, Microbiology Lab, Shaare Zedek Med. Center